The Sda Method for Numerical Solution of Lur’e Equations

نویسندگان

  • FEDERICO POLONI
  • TIMO REIS
چکیده

We introduce a numerical method for the numerical solution of the so-called Lur’e matrix equations that arise in balancing-related model reduction and linear-quadratic infinite time horizon optimal control. Based on the fact that the set of solutions can be characterized in terms of deflating subspaces of even matrix pencils, an iterative scheme is derived that converges linearly to the maximal solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A structured doubling algorithm for Lur’e Equations

We introduce a numerical method for the numerical solution of the Lur’e equations, a system of matrix equations that arises, for instance, in linear-quadratic infinite time horizon optimal control. Via a Cayley transformation, the problem is transformed to the discrete-time case, and the structural infinite eigenvalues of the associated matrix pencil are deflated. This gives a symplectic proble...

متن کامل

The ADI method for bounded real and positive real Lur'e equations

We propose an algorithm for the numerical solution of the Lur’e equations in the bounded real and positive real lemma for stable systems. The recently developed ADI iteration for algebraic Riccati equations is generalized to Lur’e equations. The algorithm provides approximate solutions in low-rank factored form. We prove that the sequence of approximate solutions is monotonically increasing wit...

متن کامل

A Deflation Approach for Large-Scale Lur'e Equations

We present an approach to the determination of the stabilizing solution of Lur’e matrix equations. We show that the knowledge of a certain deflating subspace of an even matrix pencil may lead to Lur’e equations which are defined on some subspace, the so-called “projected Lur’e equations.” These projected Lur’e equations are shown to be equivalent to projected Riccati equations, if the deflating...

متن کامل

Numerical Solution of fuzzy differential equations of nth-order by Adams-Moulton method

In recent years, Fuzzy differential equations are very useful indifferent sciences such as physics, chemistry, biology and economy. It should be noted, that if the equations that appear to be uncertain, then take help of fuzzy logic at these equations. Considering that most of the time analytic solution of such equations and finding an exact solution has either high complexity or cannot be solv...

متن کامل

A computational wavelet method for numerical solution of stochastic Volterra-Fredholm integral equations

A Legendre wavelet method is presented for numerical solutions of stochastic Volterra-Fredholm integral equations. The main characteristic of the proposed method is that it reduces stochastic Volterra-Fredholm integral equations into a linear system of equations. Convergence and error analysis of the Legendre wavelets basis are investigated. The efficiency and accuracy of the proposed method wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011